【第43回(2022年度)助成研究テーマー覧】

分野	番号	区分 ^{注1)}	研究者 (敬称略)	所属(大学·研究機関)	研究テーマ	助成 金額 (千円)	研究 ^{注2)} 期間
	1	一般	村上 太一	東北大学 大学院環境科学研究科 先端環境創生学専攻	ゼロカーボンを実現する炭素循環 製鉄原理の創成	1,500	継続 2-2
	2	一般	加藤之貴	東京工業大学 科学技術創生研究院 ゼロカーボンエネルギー研究所	大規模化可能な低コスト平板型水素 分離膜によるCO2回収効率化	1,000	継続 3-3
	3	一般	名田 譲	徳島大学 大学院社会産業理工学研究部 機械科学系	乳化植物油を用いたリジェネレイティブ バーナー燃焼技術の開発	1,500	初 1-1
	4	一般	中村 祐二	豊橋技術科学大学 大学院工学研究科	副生ガスとバイオマスによる ハイブリッド燃焼の可能性	1,500	初 2-1
	5	若手	朝原誠	岐阜大学 工学部機械工学科	DXによる製鉄用CO2フリー水素製造 システムの最適化検討	1,500	初 2-1
	6	若手	夏井 俊悟	東北大学 多元物質科学研究所	ゼロカーボン充填層型製鉄プロセスに向けた新 規動力学モデル開拓	1,500	2-1
	7	若手	禹 華芳	東北大学 大学院工学研究科	次世代電気炉製鋼用鉄源としての Fe3Cの連続製造法の開発	1,000	1-1
	8	若手	宇敷 育男	広島大学 大学院先進理工系科学研究科 化学工学プログラム	イオン液体含浸MOFの新規創製: 超臨界流体法によるアプローチ	1,000	継続 2-2
	9	一般	得平 茂樹	東京都立大学 大学院理学研究科生命科学専攻	鉄含有酵素を利用した光合成による 大気からの有用物質生産	1,500	継続 3-2
	10	一般	松崎 弘美	熊本県立大学 環境共生学部環境共生学科	CO2を原料とした生分解性乳酸ベース ポリマー生合成法の開発	1,500	2-1
	11	一般	日比野 忠史	広島大学 大学院先進理工系科学研究科	脱炭素を実現する鉄鋼スラグの 潜在エネルギー活用	1,500	3-1
	12	一般	坪内 直人	北海道大学大学院工学研究院	炭素循環型発電システムに関する 要素技術の開発	1,500	3-1
	13	若手	金 キョンミン	広島大学 大学院先進理工系科学研究科	鉄鋼スラグの有機炭素固定能力利用した 炭素隔離技術の開発	1,500	初 2-1
	14	若手	市川 俊輔	三重大学 教育学部理科教育講座	バイオリファイナリー候補細菌の セルロース系バイオマス糖化機構	1,500	2-1
	15	一般	八木 政行	新潟大学 自然科学系	水を電子源とした高効率 太陽光二酸化炭素固定システムの構築	1,500	初 3-1
地球環	16	一般	渡部 弘達	立命館大学理工学部	CO2電気分解におけるSOEC電極の 酸化耐性発現メカニズム	1,500	3-1
境	17	一般	小林 信介	岐阜大学 工学部機械工学科	CO2ガス改質のための噴流層型 プラズマ-触媒反応装置の開発	1,500	初 3-1
	18	一般	今井 剛	山口大学 工学部循環環境工学科	気体溶解技術による新規二酸化炭素の 分離・回収・利活用プロセス	1,500	2-1
	19	一般	幅崎 浩樹	北海道大学 大学院工学研究院応用化学部門	鉄鋼材料電極の表面処理による水電解 反応の活性化と耐久化	1,500	初 1-1
	20	一般	三重 安弘	(国研)産業技術総合研究所 生物プロセス研究部門	高効率・高選択的なCO2変換のための バイオミメティック触媒の開発	1,500	1-1

【第43回(2022年度)助成研究テーマー覧】

分野	番号	区分 ^{注1)}	研究者 (敬称略)	所属(大学·研究機関)	研究テーマ	助成 金額 (千円)	研究 ^{注2)} 期間
	21	一般	佐藤 努	北海道大学 工学研究院環境循環システム部門	製鋼スラグを風化促進技術に用いる為の カーボン・アカウンティング	1,500	2-1
	22	一般	伏見 千尋	東京農工大学 工学部化学物理工学科	フラッシュ加水分解による藻類からの 高効率オイル生産	1,300	初 2-1
	23	若手	松井 啓晃	関西学院大学大学院 理工学研究科生命科学専攻	海洋性珪藻における鉄感知機構の 応用技術開発	1,300	初 1-1
	24	一般	山本 剛	九州大学 大学院工学研究院化学工学部門	CO2から有機化合物原料への高効率 変換プロセスに関する研究	1,500	3-1
	25	一般	杉本 憲司	宇部工業高等専門学校 物質工学科	カルシア改質土による人工藻場の 有機炭素固定評価	1,500	2-1
	26	一般	丸岡 伸洋	東北大学 多元物質科学研究所 プロセス光学研究部門	低温排熱利用型回転円筒式CO2 吸収分離プロセスの開発	1,500	3-1
	27	一般	劉醇一	千葉大学大学院 工学研究院物質科学コース	ボトムアップアプローチによる化学蓄熱材の 高性能化	1,500	継続 2-2
	28	若手	秦慎一	山陽小野田市立山口東京理科大学 工学部応用化学科	高効率な環境発電シートのためのp型, n型テーラーメイド半導体材料	1,500	継続 2-2
	29	一般	大塚 重人	東京大学 大学院農学生命科学研究科 応用生命化学専攻	鉄資材を用いた畑土壌における 可給態リンの増大と土壌保全	1,500	継続 2-2
	30	若手	山田 駿介	東北大学 大学院工学研究科	レアメタル廃棄物を用いた蓄電材料合成と その応用	1,500	初 2-1
	31	若手	末永 俊和	広島大学大学院 先進理工系科学研究科 化学エ学プログラム	N2O発生を抑制可能なアナモックスプロセス 流入条件の検討	1,500	2-1
	32	一般	青野 宏通	愛媛大学 大学院理工学研究科 物質生命工学専攻	鉄鋼スラグからの資源回収を目的とした 機能性ゼオライトの開発	1,500	初 2-1
	33	一般	伊藤 洋介	名古屋工業大学社会工学教育類建築デザイン分野	発泡ビーズと電気炉酸化スラグを用いた 広帯域電波吸収体の開発	1,500	継続 2-2
	34	若手	福永隆之	九州大学大学院 工学研究院	初期強度を向上させた高炉スラグ含有型 環境低負荷材料の開発	1,000	継続 2-2
	35	一般	綾野 克紀	岡山大学 学術研究院環境生命科学学域	高炉スラグ細骨材がコンクリートの品質を 改善するメカニズム解明	1,000	継続 3-3
副産	36	若手	戸田 賀奈子	東京大学 大学院工学系研究科原子力専攻	天然有機物による製鋼スラグ改質土の 固化阻害反応の解明	1,000	継続 2-2
物	37	若手	齋藤 憲寿	秋田大学 大学院理工学研究科技術部	鉄鋼スラグを用いた秋田県玉川酸性水の 中和処理技術の開発	1,000	初 1-1
	38	一般	山本 光夫	東京大学 大学院農学生命科学研究科 農学国際専攻	沿岸域の藻場拡大に向けた陸域由来の 鉄及び有機物の動態評価	1,500	2-1
	39	一般	佐川 康貴	九州大学 大学院工学研究院社会基盤部門	鉄鋼スラグを用いた低炭素コンクリートの 海洋浮体構造物への適用	1,500	初 2-1
	40	一般	山本 大介	大分工業高等専門学校 都市·環境工学科	高炉セメントC種の早期強度改善と 二次製品への実装へ向けた研究	1,494	初 2-1

【第43回(2022年度)助成研究テーマー覧】

分野	番号	区分 ^{注1)}	研究者 (敬称略)	所属(大学·研究機関)	研究テーマ	助成 金額 (千円)	研究 ^{注2)} 期間
大気	41	若手	亀崎 和輝	(国研)産業技術総合研究所 環境創生研究部門	同位体比を用いたPM2.5中硝酸イオンの 起源と形成過程の解明	1,000	継続 2-2
	42	一般	定永靖宗	大阪公立大学 大学院工学研究科応用化学分野	越境輸送由来無機・有機硝酸態窒素の ガス状・粒子状別動態解明	1,000	継続 3-3
	43	若手	植田 郁生	山梨大学 大学院総合研究部工学域 物質科学系	ガス状有機成分の吸着によるPM2.5成分 分析への影響調査	800	継続 2-2
	44	一般	畑 光彦	金沢大学理工研究域地球社会基盤学系	ナノ粒子と人間行動の関係に基づく 動的環境リスク評価法の検討	1,500	継続 3-2
	45	若手	玄 大雄	東北大学 多元物質科学研究所	電気力学天秤による単一エアロゾル粒子の 多相反応系の定量的評価	1,000	1-1
	46	一般	関口 和彦	埼玉大学 大学院理工学研究科物質科学部門 物質基礎領域	エキシマ光源とオゾン分解触媒による 微小オイルミストの完全分解	1,500	2-1
	47	一般	鳥羽陽	長崎大学 大学院医歯薬学総合研究科	生体高分子を用いる大気粒子の新たな 毒性評価法の開発	1,500	2-1
	48	一般	木口 倫	秋田県立大学 生物資源科学部生物環境科学科	ドローンを用いた森林上空大気中の ガス状水銀の動態解明	1,500	2-1
	49	一般	中島 常憲	鹿児島大学 学術研究院理工学域工学系 工学専攻化学生命プログラム	鉄鋼排水中の金属錯体の存在と 生態毒性への寄与評価	1,000	継続 3-3
	50	一般	濱村 奈津子	九州大学 大学院理学研究院生物科学部門	廃棄物の資源化戦略:金属回収とナノ材料 創生バイオ技術の開発	1,500	3-1
	51	若手	羽深 昭	北海道大学大学院工学研究院環境工学部門	鉄鋼スラグ添加と膜分離による下水汚泥メタン 発酵の高度化	1,000	初 2-1
塩壌・	52	一般	村岡 貴博	東京農工大学 大学院グローバルイノベーション 研究院	新規微生物ラベル化法による環境浄化に 有効な微生物の単離技術	1,000	継続 3-3
水質	53	一般	原 宏江	金沢大学理工研究域地球社会基盤学系	RO膜のカスケード利用による地下水汚染PFAA の除去	1,500	初 2-1
	54	一般	本多 了	金沢大学理工研究域地球社会基盤学系	微生物カプセルMBR法によるPFAS汚染水 処理プロセスの開発	1,500	継続 3-2
	55	若手	堀江 好文	神戸大学内海域環境教育研究センター	重金属類が海域・淡水域に生息する魚類に 与える生体影響の違い	1,000	2-1
	56	若手	窪田 恵一	群馬大学大学院 理工学府環境創生部門	発電型底質改善技術の改善性能最適化とその 電力の利便性の向上	1,000	初 2-1

注1) 若手研究資格: 2022年4月1日時点において、次のいずれかに該当する者が主体的に研究を行う研究代表者(申請者)であること ①満年齢39歳(2年計画で申請する場合は38歳)以下の者

②博士号取得後8年未満(2年計画で申請する場合は7年未満)の者

注2)研究期間:a-b;研究期間a年中b年目、 継続;継続案件、 初;初めての助成研究者